9,862 research outputs found

    Microchimerism, dendritic cell progenitors and transplantation tolerance

    Get PDF
    The recent discovery of multilineage donor leukocyte microchimerism in allograft recipients up to three decades after organ transplantation implies the migration and survival of donor stem cells within the host. It has been postulated that in chimeric graft recipients, reciprocal modulation of immune responsiveness between donor and recipient leukocytes may lead, eventually, to the induction of mutual immunologic nonreactivity (tolerance). A prominent donor leukocyte, both in human organ transplant recipients and in animals, has invariably been the bone marrow‐derived dendritic cell (DC). These cells have been classically perceived as the most potent antigen‐presenting cells but evidence also exists for their tolerogenicity. The liver, despite its comparatively heavy leukocyte content, is the whole organ that is most capable of inducing tolerance. We have observed that DC progenitors propagated from normal mouse liver in response to GM‐CSF express only low levels of major histocompatibility complex (MHC) class II antigen and little or no cell surface B7 family T cell costimulatory molecules. They fail to activate resting naive allogeneic T cells. When injected into normal allogeneic recipients, these DC progenitors migrate to T‐dependent areas of host lymphoid tissue, where some at least upregulate cell surface MHC class II. These donor‐derived cells persist indefinitely, recapitulating the behavior pattern of donor leukocytes after the successful transplantation of all whole organs, but most dramatically after the orthotopic (replacement) engraftment of the liver. A key finding is that in mice, progeny of these donor‐derived DC progenitors can be propagated ex vivo from the bone marrow and other lymphoid tissues of nonimmunosuppressed spontaneously tolerant liver allograft recipients. In humans, donor DC can also be grown from the blood of organ allograft recipients whose organ‐source chimerism is augmented with donor bone marrow infusion. DC progenitors cannot, however, be propagated from the lymphoid tissue of nonimmunosuppressed cardiac‐allografted mice that reject their grafts. These findings are congruent with the possibility that bidirectional leukocyte migration and donor cell chimerism play key roles in acquired transplantation tolerance. Although the cell interactions are undoubtedly complex, a discrete role can be identified for DC under well‐defined experimental conditions. Bone marrow‐derived DC progenitors (MHC class II+, B7–1dim, B7–2−) induce alloantigen‐specific hyporesponsiveness (anergy) in naive T cells in vitro. Moreover, costimulatory molecule‐deficient DC progenitors administered systemically prolong the survival of mouse heart or pancreatic islet allografts. How the regulation of donor DC phenotype and function relates to the balance between the immunogenicity and tolerogenicity of organ allografts remains to be determined. Copyright © 1995 AlphaMed Pres

    Isolation, phenotype, and allostimulatory activity of mouse liver dendritic cells

    Get PDF
    Donor liver-derived dendritic cells (DC) have recently been identified within various lymphoid and nonlymphoid tissues of organ allograft recipients, including nonimmunosuppressed mice transplanted with and permanently accepting major histocompatibility complex (MHC)-disparate hepatic allografts. These findings have raised questions about the basis of the tolerogenicity of the liver—and, in particular, about the properties of liver-derived DC. To study further the structure, immunophenotype and allostimu-latory activity of leukocytes resident in normal mouse (B10.BR; H-2k, I-Ek) liver, a procedure was developed to maximize the yield of viable, nonparenchymal cells (NPC) obtained following collagenase digestion of perfused liver fragments and density centrifugation (Per-coll). These cells comprised populations expressing lymphoid and myeloid cell surface antigens. As compared with spleen cells, they proved good allostimula-tors of naive (BIO; H-2b, I-E") splenic T cells when tested in primary mixed leukocyte reactions (MLR). After overnight (18-hr) incubation of the NPC, enrichment for transiently adherent, low-density (LD) cells on metrizamide gradients permitted the recovery of low numbers of cells (approx. 2-5 × 105 per liver), many of which displayed distinct DC morphology. Flow cytometric analysis revealed that these cells were CD3-, CD4-, CD8-, and B220-, but strongly expressed CD45 (leukocyte-common antigen), and mild-to-moderate levels of CD lib, heat-stable antigen, and CD44. The cells also expressed moderate intensity of NLDC 145 but not 33D1, DC restricted markers which have been shown to be differentially expressed on mouse DC isolated from various organs. This DC-enriched population was more strongly MHC class II(I-Ek)+ than NPC, as determined by immunocytochemistry and flow cytometry and exhibited much more potent allo-stimulatory activity for naive T cells. These findings demonstrate that freshly isolated murine liver NPC, and perhaps their counterparts in situ, exhibit allo-stimulatory activity that is enhanced in the nonadherent, low-density (DC-enriched) fraction after overnight culture. They further suggest that the © 1994 by Williams and Wilkins

    In vitro propagation and homing of liver-derived dendritic cell progenitors to lymphoid tissues of allogeneic recipients: Implications for the establishment and maintenance of donor cell chimerism following liver transplantation

    Get PDF
    Dendritic cell (DC) progenitors were propagated in liquid culture from nonparenchymal cells resident in normal mouse (B10.BR; H-2k, I-E+) liver in response to granulocyte-macrophage colony stimulating factor (GM-CSF). The liver-derived DC progenitors were MHC class II-/dim and did not express counter receptors for CTLA-4, a structural homologue of the Đą cell activation molecule CD28. Following subcutaneous or intravenous injection, these liver-derived cells migrated to Đą cell-dependent areas of lymph nodes and spleen of unmodified, allogeneic (BIO; H-2b; I-E_) recipients, where they were identified 1-5 days, and 1 and 2 months after injection by their strong surface expression of donor MHC class II (I-Ek) and their dendritic morphology. Maximal numbers of liver-derived DC in the spleen were recorded 5 days after injection. Both clusters of strongly donor MHC class II+ cells— and (more rarely) dividing cells—could also be identified, suggesting cell replication in situ. Using the same techniques employed to generate DC progenitors from normal liver, GM-CSF-stimulated cells were propagated for 10 days from the bone marrow and spleen of nonimmunosuppressed mice sacrificed 14 days after orthotopic liver transplantation (B10;H-2b → C3H;H-2k). Immunocytochemical staining for recipient and donor MHC class II phenotype revealed the growth both of host cells with DC characteristics, and of cells expressing donor alloantigens (I-Ab). These results are consistent with the growth, in response to GM-CSF, of donor-derived DC from progenitors seeded from the liver allograft to recipient lymphoid tissue. The functional activity of the progenitors of chimeric DC and the possible role of these cells in the establishment and maintenance of donor-specific tolerance following liver transplantation remain to be determined. © 1995 by Williams and Wilkins

    Growth of donor-derived dendritic cells from the bone marrow of murine liver auograft recipients in response to granulocyte/macrophage colony-stimulating factor

    Get PDF
    Allografts of the liver, which has a comparatively heavy leukocyte content compared with other vascularized organs, are accepted permanently across major histocompatibility complex barriers in many murine strain combinations without immunosuppressive therapy. It has been postulated that this inherent tolerogenicity of the liver may be a consequence of the migration and perpetuation within host lymphoid tissues of potentially tolerogenic donor-derived ("chimeric") leukocytes, in particular, the precursors of chimeric dendritic cells (DC). In this study, we have used granulocyte/macrophage colony-stimulating factor to induce the propagation of progenitors that give rise to DC (CD45+, CDllc+, 33D1+, nonlymphoid dendritic cell 145 +, major histocompatibility complex class II+, B7-1+) in li-tuid cultures of murine bone marrow cells. Using this technique, together with immunocytochemical and molecular methods, we show that, in addition to cells expressing female host (C3H) phenotype (H-2Kk+; I-E+; Y chromosome-), a minor population of male donor (B10)-derived cells (H-2Kb+; I-A+; Y chromosome+) can also be grown in 10-d DC cultures from the bone marrow of liver allograft recipients 14 d after transplant. Highly purified nonlymphoid dendritic cell 145+ DC sorted from these bone marrow-derived cell cultures were shown to comprise ~1-10% cells of donor origin (Y chromosome +) by polymerase chain reaction analysis. In addition, sorted DC stimulated naive, recipient strain T lymphocytes in primary mixed leukocyte cultures. Evidence was also obtained for the growth of donor-derived cells from the spleen but not the thymus. In contrast, donor ceils could not be propagated from the bone marrow or other lymphoid tissues of nonimmunosuppressed C3H mice rejecting cardiac allografrs from the same donor strain (B10). These findings provide a basis for the establishment and perpetuation of cell chimerism after organ transplantation. © 1995, Rockefeller University Press., All rights reserved

    Universality of electron accumulation at wurtzite c- and a-plane and zinc-blende InN surfaces

    Get PDF
    Electron accumulation is found to occur at the surface of wurtzite (112¯0), (0001), and (0001¯) and zinc-blende (001) InN using x-ray photoemission spectroscopy. The accumulation is shown to be a universal feature of InN surfaces. This is due to the low Г-point conduction band minimum lying significantly below the charge neutrality level

    Generation of DC from mouse spleen cell cultures in response to GM-CSF: Immunophenotypic and functional analyses

    Get PDF
    In all tissues that have been studied to date, dendritic leucocytes constitute only a small proportion of total cells and are difficult both to isolate and purify. This study reports on a method for the propagation of large numbers of dendritic cells (DC) from mouse spleen using granulocyte-macrophage colony-stimulating factor (GM-CSF) and their characteristics. Within a few days of liquid culture in GM-CSF, B10 BR (H-2(k), I-E+) mouse splenocytes formed loosely adherent myeloid cell clusters. Mononuclear progeny released from these clusters at and beyond 4 days exhibited distinct dendritic morphology and strongly expressed leucocyte common antigen (CD45), CD11b, heat-stable antigen, Pgp-1 (CD44) and intercellular adhesion molecule-1 (ICAM-1; CD54). The intensity of expression of the DC-restricted markers NLDC 145 and 33D1, the macrophage marker F4/80, and FcÎłRII (CDw32) was low to moderate, whereas the cells were negative for CD3, CD45RA and NK1.1. High and moderate levels, respectively, of cell surface staining for major histocompatibility complex (MHC) class II (I-E(k)) and the B7 antigens (counterreceptors of CTLA4, a structural homologue of CD28) were associated with potent stimulation of unprimed, allogeneic T-cells (B10; H-2b, I-E-). DC propagated in a similar fashion from DBA/2 mouse spleen proved to be strong antigen-presenting cells (APC) for MHC-restricted, syngeneic T-helper type 2 (Th2) cell clones specifically responsive to sperm whale myoglobin. Footpad or intravenous injection of GM-CSF-stimulated B10.BR spleen-derived DC into B10 (H-2b, I-E-) recipients resulted in homing of the allogeneic cells to T-cell-dependent areas of lymph nodes and spleen, where they strongly expressed donor MHC class II antigen 1-2 days later. These findings indicate that cells can be propagated from fresh splenocyte suspensions that exhibit distinctive features of DC, namely morphology, motility, cell-surface phenotype, potent allogeneic and syngeneic APC function and in vivo homing ability. Propagation of DC in this manner from progenitors present in lymphoid tissue provides an alternative and relatively convenient source of high numbers of these otherwise difficult to isolate but functionally important APC
    • 

    corecore